Breather solutions of the cubic Klein–Gordon equation
نویسندگان
چکیده
منابع مشابه
Breather solutions of the discrete p-Schrödinger equation
We consider the discrete p-Schrödinger (DpS) equation, which approximates small amplitude oscillations in chains of oscillators with fully-nonlinear nearest-neighbors interactions of order α = p − 1 > 1. Using a mapping approach, we prove the existence of breather solutions of the DpS equation with evenor oddparity reflectional symmetries. We derive in addition analytical approximations for the...
متن کاملOn Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...
متن کاملTen-parameters deformations of the sixth order Peregrine breather solutions of the NLS equation
In this paper, we construct new deformations of the Peregrine breather of order 6 with 10 real parameters. We obtain new families of quasi-rational solutions of the NLS equation. With this method, we construct new patterns of different types of rogue waves. We get as already found for the lower order, the triangular configurations and rings isolated. Moreover, one sees for certain values of the...
متن کاملDeformations of the seventh order Peregrine breather solutions of the NLS equation with twelve parameters
We study the solutions of the one dimensional focusing NLS equation. Here we construct new deformations of the Peregrine breather of order 7 with 12 real parameters. We obtain new families of quasirational solutions of the NLS equation. With this method, we construct new patterns of different types of rogue waves. We recover triangular configurations as well as rings isolated. As already seen i...
متن کاملSolutions of the Cubic Fermat Equation in Quadratic Fields
We give necessary and sufficient conditions on a squarefree integer d for there to be non-trivial solutions to x + y = z in Q( √ d), conditional on the Birch and Swinnerton-Dyer conjecture. These conditions are similar to those obtained by J. Tunnell in his solution to the congruent number problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2020
ISSN: 0951-7715,1361-6544
DOI: 10.1088/1361-6544/abb78b